soal matematika induksi matematika
1. soal matematika induksi matematika
Induksi di atas menunjukkan penjumlahan bilangan hasil (2k - 9)(k - 7) dengan k sama dengan 8 sampai 11.
(2(8) - 9)(8 - 7) + (2(9) - 9)(9 - 7) + (2(10) - 9)(10 - 7) + (2(11) - 9)(11 - 7)
= (7)(1) + (9)(2) + (11)(3) + (13)(4)
= 7 + 18 + 33 + 52
= 110
[tex]\boxed{\text{Kelas: 12}}[/tex]
[tex]\boxed{\text{Pelajaran: Matematika}}[/tex]
[tex]\boxed{\text{Kategori: Barisan/Deret}}[/tex]
[tex]\boxed{\text{Kode: 12.2.7}}[/tex]
[tex]\boxed{\text{Kata Kunci: induksi}}[/tex]
2. soal induksi matematika
IndukSI
p(k) + n(k+1) = p(k+1)
Penjelasan dengan langkah-langkah:
[tex]\sf i^2 + 2^2 + 3^2+ . .. + n^2 = \frac{1}{6}(n)(n+1)(2n+1)[/tex]
[tex]\sf p(k) + n(k+1) = p(k+1)\\[/tex]
[tex]\sf \frac{1}{6}(k)(k+1)(2k+1) + (k+1)^2 = \frac{1}{6}(k+1)(k+1+1)(2(k+1) +1))[/tex]
[tex]\sf \frac{1}{6}(k)(k+1)(2k+1) + (k+1)^2 = \frac{1}{6}(k+1)(k+2)(2k+2 +1))[/tex]
[tex]\sf \frac{1}{6}(k)(k+1)(2k+1) + (k+1)^2 = \frac{1}{6}(k+1)(k+2)(2k+3)[/tex]
[tex]\sf \frac{1}{6}(k+1)\{ k(2k+1) + 6(k+1)\} = \frac{1}{6}(k+1)(k+2)(2k+3)[/tex]
[tex]\sf \frac{1}{6}(k+1)\{ 2k^2 + k+6k + 6\} = \frac{1}{6}(k+1)(k+2)(2k+3)[/tex]
[tex]\sf \frac{1}{6}(k+1)\{ 2k^2 +7k + 6\} = \frac{1}{6}(k+1)(k+2)(2k+3)[/tex]
[tex]\sf \frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)(k+2)(2k+3)[/tex]
terbukti ruas kiri=ruas kanan
terbukti untuk n bilangan asli
3. soal induksi matematika
Jawab:
1. Konstanta= A dipindahkan ke belakang ∑
2. ∑1 +∑2= atas ∑2, tengah ∑1,∑2, dan bawah ∑1
3. K² dipecah menjadi (k+1) (k+2) dan ditambah k=1 3-1 = 2 k=-2+1=k-1
4. 9-5=4
k=2-k=1=1
7 k²= 7 k² 8k-7k=k
16-7=9
5. 2t+3t-10+t-2=3t+4t=12&3n=3 n=3/3=1
6. 15-6=9
k=7-k=1=k=6
k*k=k² -1k-1k=-2k -1*-1=1
Penjelasan dengan langkah-langkah:
1. Konstanta= A dipindahkan ke belakang ∑
A. n n
∑ A. ui = A. ∑ ui
i=1 i=1
2. m-1 n n
∑ ui + ∑ ui = ∑ ui
i=1 i=m i=1
3. 3 2
∑ (k²+k) = ∑ (k+1) (k+2)
k=2 k=1
K² dipecah menjadi (k+1) (k+2) dan ditambah k=1 3-1 = 2 k=-2+1=k-1
4. 9 5
∑ 7 k²= 7 + ∑ (k²+8k+16)
k=2 k=1
9-5=4
k=2-k=1=1
7 k²= 7 k² 8k-7k=k
16-7=9
5. 12 12
∑ (2t+5) (t-2) = ∑ (2n²+n-10)
t=7 n=7
=2t*-2+5*t+5*-2+2t*t 2n+n-5-2
=-4t+5t+-10+2t² = n-2
= 2t+3t-10+t-2=3t+4t=12 3n=3 n=3/3=1
6. 6 15 15
∑ (k-1)² + ∑ (k-1)² = ∑ (k²-2k+1)
k=1 k=7 k=1
15-6=9
k=7-k=1=k=6
k*k=k² -1k-1k=-2k -1*-1=1
4. tolong yaa Soalnya tentang induksi Matematika
Jawaban:
semoga membantuyaaaaaa
Jawab:
2+6+10... (4n-2)=2n^2
Penjelasan dengan langkah-langkah:
n=1
4 (1)-2=2 benar
n=k
2+6+10... (4k-2)=2k^2
n=k+1
2+6+10... (4k-2)+(4 (k+1)-2)=2 (k+1)^2
2k^2+(4 (k+1)-2)=2 (k+1)^2
2k^2+4k+4-2=2 (k^2+2k+1)
2k^2+4k+2=2k^2+4k+2
5. contoh soal induksi matematika
Contoh Soal Berupa Lampiran
-----------------------------------------------------------------------------------------------------------------
Kelas : XI [Kurikulum 2013 Revisi]
Mata Pelajaran : Matematika
Kode Mapel : 2
Kategori : Bab 1 - Induksi matematika [Kurikulum 2013 Revisi]
Kode kategorisasi : 11.2 [Kelas 11, Kode Mapel 2]
Soal serupa dapat dilihat di,
brainly.co.id/tugas/4222426
#backtoschoolcampaign
6. Soal tentang induksi matematika
Jawab:
Valid
Valid
Penjelasan dengan langkah-langkah:
Misal n = 2, 1+2 = 2(2+1)/2 = 3, Valid
Jika 1+2+...+n = n(n+1)/2, maka 1+2+...+n+n+1=(n+1)(n+2)/2
n(n+1)/2+(n+1) = (n+1) (n+2)/2
(n²+n)/2+(n+1) = (n²+3n+2)/2
(n²+3n+2)/2 = (n²+3n+2)/2, Valid
Misal n = 3, 2(3)+1 < 2³, Valid
Jika 2(n)+1 < 2ⁿ, 2 (n+1) + 1 < 2ⁿ⁺¹
2n+2+1 < 2ⁿ⁺¹
2ⁿ+2 = 2ⁿ⁺¹
2ⁿ⁺¹ = 2ⁿ⁺¹, Valid
7. contoh soal induksi matematika dengan penyelesaian
Materi : Induksi Matematika
8. INDUKSI MATEMATIKABuktikan dengan induksi matematika bahwa n=n+1 bernilai benar!soal di pict!
Materi Induksi Matematika
(kebetulan saya ada catatannya)
9. Bantu dong soal induksi matematika
semoga bisa membantuuu
10. soal induksi matematika
Materi Induksi Matematika
Lanjutan:
Ternyata P(k) mengimplikasikan P(k+1). Menurut prinsip induksi matematis, P(n) telah terbukti benar
11. soal dan pembahasan tentang induksi matematika
b. merah ---->x + y < 2
biru ----> -3x + 2y > 6
hijau & ungu ------>3 < x < 4
12. soal dan jawaban induksi matematika
Jawaban:
Jenis Induksi Matematika
Deret Bilangan
Sebagai ilustrasi dibuktikan secara induksi matematika bahwa 1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n + 1).
Langkah 1
untuk n = 1, maka :
1 = \frac{1}{2}n(n + 1)
1 = \frac{1}{2}(1)(1 + 1)
1 = 1
Bentuk untuk n = 1 rumus tersebut benar.
Langkah 2
Misal rumus benar untuk n = k, maka:
1 + 2 + 3 + \cdots + k = \frac{1}{2}k(k + 1)
Langkah 3
Akan dibuktikan bahwa rumus benar untuk n = k + 1. Sehingga:
1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} (k + 1)((k + 1) + 1)
Pembuktiannya:
1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} k(k + 1) + (k + 1) (dalam langkah 2, kedua ruas
ditambah k + 1)
= \frac{1}{2}k (k + 1) +\frac{1}{2} [2(k + 1)] . (k + 1) dimodifikasi menyerupai \frac{1}{2} k (k + 1))
= \frac{1}{2}[k(k + 1) + 2(k + 1)] (penyederhanaan)
= \frac{1}{2}(k^2 + k + 2k + 2)
= \frac{1}{2}(k^2 + 3k + 2)
1 + 2 + 3 + \cdots + k + (k + 1) = \frac{1}{2} (k + 1)(k + 2) (terbukti)
Bilangan bulat hasil pembagian
Suatu bilangan dikatakan habis dibagi jika hasil pembagian tersebut adalah bilangan bulat. Sebagai ilustrasi, dibuktikan secara induksi matematika bahwa 5^{2n} + 3n - 1 habis dibagi 9.
Langkah 1
untuk n = 1, maka:
5^{2n} + 3n - 1 = 5^{2(1)} + 3(1) - 1
=5^2 + 3 - 1
= 27
27 habis dibagi 9, maka n = 1 benar.
Langkah 2
Misal rumus benar untuk n = k, maka :
5^{2n} + 3n -1 \overset {menjadi}{\rightarrow} 5^{2k} + 3k - 1 (habis dibagi 9)
5^{2k} + 3k - 1 =9b (b merupakah hasil bagi 5^{2k} + 3k - 1 oleh 9)
13. Bantuin dong soal induksi matematika
Jawab:
induksi matematika
pada soal di perbaiki,
semula 2 + 5 + 8 + ... + (3n + 1) = 1/2 n ( 3n+1)
diperbaiki seharusnya 2 + 5 + 8 + ... + (3n - 1) = 1/2 n ( 3n+1)
Penjelasan dengan langkah-langkah:
2 + 5 + 8 + ... + (3n - 1) = 1/2 n ( 3n+1)
i) n = 1 --> (3.1 - 1) = 1/2 (1)(3.1 + 1) --> (2) = (2) (benar)
ii) n = k --> 2 + 5 + 8 + ... + (3k - 1) = 1/2 k ( 3k +1)
iii) n = k + 1 --> 2 + 5 + 8 + ... + (3k - 1)+ 3 (k+1) - 1 = 1/2 (k+1) ( 3(k+1) +1)
1/2 k (3k+ 1) + 3k + 3 - 1 = 1/2 (k+1)(3k + 3 +1)
1/2 k( 3k + 1) + 3k + 2 = 1/2 (k+1)(3k+4)
1/2 k(3k+1) + 6/2 k + 4/2 = 1/2 (k+1) (3k + 4)
1/2 { k(3x +1) + 6k + 4 } = 1/2 (k+1)(3k + 4)
1/2 { 3x² + k + 6k + 4 } = 1/2 (k+1)(3k + 4)
1/2 (3k²+ 7k + 4) = 1/2 (k+1)(3k+4)
1/2 (k+1)(3k+4) = 1/2 (k+1) (3x+4)
ruas kiri = ruas kanan (terbukti)
14. Induksi MatematikaSoal no f
Matematika Wajib
Induksi Matematika XI SMA
Pembahasan :
Terlampir...Materi induksi matematika
<<<
yg plg atas itu coretan (jgn dicatat)
15. selesaikan soal berikut dengan induksi matematika
Jawaban:
untuk setiap n E bik Asli, 11n-6habis di bagi 5 hasil nya 1